
Experiences Threat Modeling at Microsoft

Adam Shostack
adam.shostack@microsoft.com

Microsoft

Abstract. Describes a decade of experience threat modeling products
and services at Microsoft. Describes the current threat modeling method-
ology used in the Security Development Lifecycle. The methodology is
a practical approach, usable by non-experts, centered on data flow di-
agrams and a threat enumeration technique of ‘STRIDE per element.’
The paper covers some lessons learned which are likely applicable to
other security analysis techniques. The paper closes with some possible
questions for academic research.

1 Introduction

Microsoft has had documented threat modeling methodologies since 1999. These
methods have been effective at finding security flaws in product designs, and
have been incorporated into the Security Development Lifecycle, a set of pro-
cesses applied to all Microsoft products with significant security or privacy risks1

Microsoft continues to invest in updating our tools, methodologies and processes
with lessons learned. This paper aims to share information about the history of
our SDL threat modeling methods, lessons we’ve learned along the way (which we
think may be of interest outside of Microsoft), describe our current approaches,
and share some problems which we hope are of interest to academic researchers.

The author is the owner of SDL threat modeling, including processes, tools
and training. As this is a single author paper, the singular pronoun is used for
my own opinions, or an authorial voice, while the plural is used to express views
which can reasonably be attributed to the organization. For example, in the next
section, I do not believe that Microsoft has a formal or agreed opinion on the
linguistic question of descriptivism versus prescriptivism.

1.1 What I mean by threat modeling

The term threat modeling has many uses. I now take an intentionally descrip-
tivist approach to “what is threat modeling,” and note how the term is used,
rather than trying to force a single definition onto it. Some of the more common
distinctions include: The term “threat” is used to mean both ‘threat-agent,’ that
is, the person attacking a system, and as a risk, that is, what might go wrong.
Threat modeling can refer to a requirements elicitation technique (“what’s your

1 Significant risk is explained in detail in the “Introduction to SDL Process,” [9].



2 Adam Shostack adam.shostack@microsoft.com

threat model?”) or a design analysis technique (“can I see your threat model
analysis?”). Additionally, threat modeling can be asset-centric, attacker-centric
or software-centric. Asset-centric threat modeling often involves some level of
risk assessment, approximation or ranking. Attacker-centric sometimes involves
risk-ranking or attempts to estimate resources, capabilities or motivations. (Such
estimates are challenging for creators of broadly deployed packaged software.
Broad deployment often indicates a variety of threat landscapes for different de-
ployments.) Each threat modeling approach has strengths and weaknesses which
I focus on as needed to explain other details or lessons learned.

Threat modeling is also used to refer, variously, to analysis of software, orga-
nizational networks or systems, or, as in [11] even industrial sectors. Modeling
of protocols is often done with a variety of formal methods, sometimes called
network threat models. The term network threat modeling is also used to refer
to the analysis of a deployed network.

Finally, threat modeling can be done by security experts and shared with
engineers, done collaboratively with both engineers and experts, or done by en-
gineers without experts available. Experts might question the value or wisdom of
such an approach. There are at least two reasons it may make sense to perform
threat modeling without experts. First, experts might not be available because
they are in short supply for financial or other reasons. Second, having the peo-
ple who will build a system – not all of whom are security experts – involved
gives them a sense of ownership and an understanding of the security model.
Threat modeling encompasses a wide variety of activities in the elicitation of se-
curity requirements and analysis of security designs. There is no single “best” or
“correct” way of performing threat modeling, but rather, a complex and multi-
dimensional set of tradeoffs which might be made in order to meet a some set
of implicit or explicit goals.

1.2 Evaluating Methodologies

One important part of the evaluation of a methodology is the choice of what to
compare it to. It is easy to critique these in relation to some idealized notion
of “what should be done, absent any constraints.” “What should be done”is a
great question for research, and we are fully supportive of such questions. There
is another important set of questions, especially for a workshop bringing together
academics and practitioners. Those questions include “what is typically done”
and “what are the barriers to adoption of new methods?” The overarching ques-
tion in this vein is “what existing processes would be improved by the addition
of this methodology, and how much will it cost?” Cost includes getting started
(training, setup, software) and ongoing time commitments within a project. Soft-
ware costs may also be included, but tend to be dwarfed by the human effort
involved. The major goals for our threat modeling process are to improve the
security of our products, to document the analysis, (both to provide a level of
assurance and to re-use the analysis), and to train people to perform implicit
security analysis, even when not performing explicit threat modeling tasks.



Experiences Threat Modeling at Microsoft 3

2 Some History

Threat modeling at Microsoft was first documented as a methodology in a 1999
internal Microsoft document, “The threats to our products” [8].2 This was not
the first time anyone threat modeled at Microsoft, but rather the first time the
methodology was formalized3 or considered as an abstracted engineering activity.
Additional published Microsoft versions include (at least):

– Writing Secure Code, Howard and LeBlanc, 2001
– Writing Secure Code, Howard and LeBlanc, 2nd edition 2002
– Threat Modeling, Swiderski and Snyder , 2004
– The Security Development Lifecycle, Howard and Lipner, 2006

I list these to illustrate that methodologies evolved, and they evolved and
continue to evolve in response to needs we discovered as we worked. I’ll first
explain the current system, then explore some of the needs which drove the
evolution, and some of the issues that came up. Many of these issues may be
of interest to academic researchers who hope to see their innovative systems
adopted.

3 Current SDL Methodology

The current SDL threat modeling methodology is a 4 step process, designed to
enable engineers with a modicum of security expertise to threat model and have
reasonable confidence that they have found important threats. The goals of the
process are to improve the security of designs, to document the security design
activity and to teach about security as people work through the process. The
method involves 4 major steps: diagramming, threat enumeration, mitigation
and verification. The process is further described in Hernan, et al [4].

3.1 Diagramming

We generally use a diagramming system derived from standard Data Flow Di-
agrams (DFD), with the addition of “trust boundaries.” We find the DFD ele-
ments of ‘Process,’ ‘Data Store,’ ‘Data Flow’ and ‘External entity’ work reason-
ably well as a means of eliciting information which can be used to drive analysis.
These are shown in table 1. We have added “trust boundaries,” represented by
a dotted line or box, which are places where the different sides of the boundary

2 An earlier version of this paper incorrectly attributed ‘threats’ to Jason Garms,
Praerit Garg and Michael Howard. The actual authors were Praerit Garg and Loren
Kohnfelder.

3 I’m using “formalized” in the sense of “concerned with the form, as distinguished
from the matter, of reasoning” [10] rather than as a mathematical formalism to
enable theorem proving. Thus a formal methology involves a set of repeatable and
documented steps, with defined inputs and outputs.



4 Adam Shostack adam.shostack@microsoft.com

operate at different privilege levels. The reasoning behind the original decision to
use DFDs stemmed from two factors. First, it’s easy to understand, and second,
it’s very data-centric. A great many software attacks involve the flow of data
through the system in some way, and so DFDs are focused on ‘the right thing.’
With 7 or 8 years of experience and practice, the DFD approach to diagramming
is strongly entrenched. Suggested replacement approaches need to demonstrate
clear benefit for us to consider them.

Name External entity Process Data flow Data store

Representation rectangular box circle directed arrow parallel lines

Definition Things outside
your control

Code How
information
flows between
other elements

Data at rest

Examples People, other sys-
tems, web sites

exes, assemblies,
COM
components

Function calls files, databases,
registry keys

Table 1. DFD Elements

A typical DFD contains between 10 and 150 elements (excluding trust bound-
aries and any textual annotations on the diagrams.) The main determinants
of complexity are trust boundaries and how much detail is needed to clarify
what happens as things cross trust boundaries. Many systems are diagrammed
“bottom-up” for two reasons. The first is that Microsoft often uses ‘feature crews’
of developers, testers and program managers who are very focused on their fea-
ture or features. It’s a natural breakdown of work to ask each crew to threat
model their own work. The second reason is that the SDL required threat models
of ‘all new features and the product as a whole,’ rather than some other word-
ing. I raise this to point out that particular wording in descriptions can have
unexpected consequences.

3.2 Threat enumeration

Origins Many threat modeling activities at Microsoft and elsewhere, including
early SDL processes, have organized around a brainstorming session, or other
informal approaches to issue enumeration. Brainstorming sessions are may work
for experts, but even with experts, there are issues of completeness and repeata-
bility. We identified a need to provide more prescriptive and easier to follow
advice. The method we now use derives from unpublished analysis of CVE and
MSRC issues which was performed by Shawn Hernan and Michael Howard.

Current Methodology Our current methodology uses the diagrams in a tech-
nique we call “STRIDE per element” to provide guidance for non-experts, as



Experiences Threat Modeling at Microsoft 5

well as repeatability. The technique is based on the observation that the soft-
ware architecture threats we are concerned with are clustered. The essence of
the technique is to note that for each type of element within the DFD, there are
threats we tend to see, and thus look for elements as shown in table 2.

Table 2. STRIDE Threats Per Element

For data stores which are logs, we are concerned with repudiation issues, and
attacks on the data store to delete the logs. In our current tooling, we use a set
of questions to make these threats more concrete and accessible.

Analysis I make no claim of universal applicability for this enumeration. It is
focused on those issues for which Microsoft issues updates. Other organizations
might extend or replace it. For example, “information disclosure by external
entity” sounds like a good description of a subset of privacy issues. Alternately,
another organization, focused on Web 2.0 apps might replace the list of threats
with ones tuned for their environment.

In our current tooling, we offer guidance about how each of these threats
manifests against each type of element. It is clear that more specific guidance
would be very helpful. For example, the opportunities, methods and mitigations
for tampering with a data flow are very different between an HTTP GET request
and a Windows LPC (Local Procedure Call) or a Unix named pipe.

3.3 Mitigation

The SDL threat modeling training and documentation discusses four approaches
to mitigation, in order of preference: redesign, use ‘standard’ mitigations, such
as ACLs, use unique mitigations (with caution) or accept risk in accordance with
policies.

From a practitioner perspective, connecting a model to practical resolution
steps is important on a number of levels. First, improving system security is the
goal of modeling. Providing a connection between an identified problem and a
way to address the problem makes that easier. Second, there is a psychological
component. Telling an engineer that there is a problem without providing fix



6 Adam Shostack adam.shostack@microsoft.com

information will frustrate many engineers4. (More on the psychological factors
in section 4.5 below.)

3.4 Validation

We provide a number of heuristics for validating threat models, including graph
analysis of diagrams, checking that the final diagrams reflect the final code, that
STRIDE threats per element have been enumerated, that the whole threat model
has been reviewed, and that each threat is mitigated. We would like to be able
to compare models to code in many languages. (See section 5.1 for more.)

3.5 Analysis of the methodology

This approach is in use across some very large software products, and is embed-
ded in both the SDL process and other software development processes. These
other processes provide much of our assurance as to the correctness and com-
pleteness of the threat models produced in relation to the software. Delegating
the correctness and completeness to a broader set of processes has benefits and
costs. The benefits are in accountability and integration. Individuals are required
to sign-off that threat models are complete with regard to trust boundaries and
accurate with regards to what is being built. The primary cost is that the lack
of strong theoretical underpinnings makes it hard to connect the models to aca-
demic work which has been done. Overall, we believe that the simplicity of the
approach, the integration into the development process, and new tooling (not
presented here) provide for a very effective approach for identifying and address-
ing design issues in commercial software development.

One of the anonymous reviewers asked for evidence that ‘the approaches
taken are the right ones.’ I make no such claim. I do claim that the approaches
are useful, for the challenges that we have identified and which I have discussed.
In light of the many meanings of threat modeling and the many goals which
processes may serve, I don’t believe that there is a right or wrong approach,
only ones that are more or less useful.

4 Issues Encountered and Lessons Learned

4.1 Threat modeling as an aspirational tabula rasa

With threat modeling having many meanings (as mentioned in section 1.1)
many people projected their beliefs about what threat modeling ought to be
into a methodology, and added steps to the methods. These steps were often
added without understanding the costs, benefits or issues theymight generate.
An example of this is the addition of the DREAD risk assessment technique.[6]
DREAD may work for some systems, but for software-centric threat modeling,
4 Some engineers will relish the challenge. In security, experience shows that naive

approaches rarely work. This combination is usually frustrating.



Experiences Threat Modeling at Microsoft 7

it seems to add numbers without defining their scales, generating a risk of mak-
ing a risk assessment appear algorithmic when it’s not However, Microsoft or
SDL threat modeling “obviously” needs a risk management technique, and so
DREAD was added.

4.2 Complexity

Many participants in threat modeling have never received formal training, but
have picked up what to do informally from others. I was once surprised to find an
entire security team, all of whom were conversant in threat modeling techniques
and jargon, none of whom had never been to a training class. Given the very
large number of security classes, tools and techniques available within Microsoft,
it is reasonable to assume that most practitioners have at most, 2 hours of threat
modeling training in the last few years.

The method enumerated in the Security Development Lifecycle book has 9
steps. Some others have had as many as 11. The difficulty of each step can vary
widely, from “describe use scenarios” to “determine threat types.” The former is
probably reasonable to ask of most engineers, the latter is almost certainly out
of the reach of non-experts, and likely to engender strong disagreements between
experts. Methodology descriptions are full of jargon, adding complexity for small
benefit.

Designers of methodologies should pay careful attention to the demands made
of their users, and consider the value of each step or element.

4.3 “Connectedness”

Threat modeling activities can seem very disconnected from software develop-
ment. The agile motto of “YAGNI” (‘You Ain’t Gonna Need It’) can seem like it
was coined for threat modeling. A number of approaches have helped integrate
threat modeling into development process, including treating threats as bugs
and mitigations/countermeasures as features. Bugs and features are understood
by developers, and organizations know how to handle them. Additionally, we
encourage teams to use the question “can I see your threat model” as a way to
kick off security discussions. This generates peer pressure to have a good threat
model. 5

There are two additional design considerations which I wanted to call out
specifically, both relating to people. The first is humans within the threat model,
and the second is the human factors engineering issues related to the design of
security modeling methods, process and tooling.

5 More generally, approaches like the Microsoft SDL, with a need to address the variety
of development methodologies, can seem disconnected. The point is not unique to
threat modeling.



8 Adam Shostack adam.shostack@microsoft.com

4.4 People in the security model

There are a number of considerations about people in security models. Elli-
son has argued [3] that all network protocols, considered fully, include both
computers and people. A failure to effectively model people leads to problems
such as phishing, where three levels of poor authentication combine to result in
tremendous fraud. (The three levels are schemes which have proven insufficient
for authenticating email, web sites and users.) While modeling users is tremen-
dously challenging, failure to do so demonstrably leads to important security
issues. How to help engineers do this effectively is an open problem, which has
also been considered by Cranor [2].

4.5 People as users of a security modeling process

Engineers, designing for engineers, sometimes ignore usability concerns. There is
a great deal which has been written on user interface design, human-computer
interaction, and related topics, and I assume that system designers are familiar
with it. I wanted to raise three points which are important to security modeling
systems intended for use by a broad set of engineers. The first is to clearly state
your expected user and their skillset. Advice we gave, such as “think like an
attacker,” was meaningless to many people 6. I find challenging security experts
to think like a professional chef helps illustrate the feeling.

The second is to design explicit development integration points for the se-
curity modeling methodology. The integration points may seem obvious to the
designer, but might not be to someone learning the system for the first time.
An explicit statement of how to integrate into agile and waterfall processes can
help overcome this hurdle. In particular, explaining what outputs might be bugs
or features can be very helpful. More generally, security modeling is done by a
wide group of people with different skillsets and goals. Bring a diverse toolset to
the problems, and look at the problem end to end (including the engineers and
the organizations that they work for).

The third and final point is perhaps obvious but worth a little emphasis from
the industrial perspective. Processes which can be used by any intelligent and
skilled engineer will be more broadly used than processes which require unusual
skills. Ease of use and clear documentation are important, and often receive little
attention, even in work labeled “practical.”

5 Open Research Problems We See

The methodologies outlined above are less grounded in mathematics than many
presented at academic events. As I have emphasized, this approach has benefits
6 Additionally, people were reluctant to admit that they didn’t know how to “think

like an attacker.” The way in which it was often stated implied it was the most
natural thing in the world. So knowing your model of the user is important, as is
testing that model actually applies.



Experiences Threat Modeling at Microsoft 9

and costs. We would like to see more collaboration between the broad soft-
ware industry and the modeling community. Towards this end, I have attempted
to present clear explanations of the motivations and crucial factors within the
decisions we have made. I am hopeful that the ‘applied’ side of the academic
community can incorporate some of these factors in their assessment of what
constitutes interesting research. In our roadmap for our processes and tooling,
there are many practical engineering problems, some of which I have alluded to.
There are others which we hope are interesting to the research community, and
I present three of those here.

5.1 Relating models to code

There are many benefits to our lightweight model. At the same time, the model
is not the code, and we would like to be able to address two scenarios: The first
is that we have a body of code for which no threat model or DFD exists, for
example after an acquisition. We would like to be able to rapidly create models
from the code to accelerate threat modeling activity. The second scenario is that
we have threat models and code, and would like to be able to compare them.
Does the model contain all of the trust boundaries and entry points as the code?
Are there links in the code which are important to, and not in, the model?

Some work has been done [1] on using Reflexion Models to semi-automatically
derive models from code and compare them to user-created models, but much
work remains to be done to completely automate the derivation of models from
code. In particular, there is a tremendous amount of existing code written in C
and C++. These languages are more challenging to model and analyze, but the
payoff for such modeling could be very large.

5.2 Extending models with validation information

Much security advice involves “accept only what is explicitly allowed.” The
idea is that an engineer knows what they expect, and can deny all other input.
Assuming this is locally true, much data which enters a system has been validated
for some whitelist or purpose, such as “valid IP packet” “valid POP3 message.”
However, this data is not generically trustworthy, it’s trusted for some set of
purposes. Defining that set of things is easy for small problems, and seems to be
hard to generalize. It would be very useful to have languages to describe such
intent, and tools which could use such information to improve security model
analysis, code, or both.

5.3 Threat model measurement

Today we create a great many threat models. There are some simple measure-
ments we could take (number of elements, various completeness or verbosity
measures). What is less obvious is what measurements we should take, and why.
What aspects of a threat model would most accurately indicate that our goals



10 Adam Shostack adam.shostack@microsoft.com

of security analysis, assurance and training are being met? More generally, what
indicators relate to which goals, and how? How much does it cost to gather a
measurement? (A brief story: One of our threat modeling discussion lists received
an email asking about how to approach a certain problem. A number of people
answered, and there was rapid iteration over a variety of design possibilities. The
team selected one. It is unlikely that any of the possibilities were ever formally
documented. I think this was a reasonable choice: we got an improvement in
security at low cost. The value to documenting the iteration is low.) Is there a
way we could analyze models and determine the likelihood that it has iterated?
What other measurement approaches could aid developers or decision makers?

6 Acknowledgements

I would like to thank the anonymous reviewers, Shawn Hernan, Steven Lipner
J.D. Meier and Glenn Pittaway for helpful comments on drafts, and colleagues,
too numerous to list here, for illuminating conversations about threat modeling.
I am also thankful to Bruce Schneier for blogging about the paper, and to several
of his readers for drawing attention to ambiguities which are perhaps now less
ambiguous. Curtis Koenig pointed out an important error in table 1, where the
representations were swapped.

7 Conclusion

This paper has briefly described some history of threat modeling as practiced
at Microsoft. It shares details of the current process and some lessons learned.
It has also presented a selection of perspectives research problems that we hope
are of interest to the academic research community.

8 Notice

This paper is for informational purposes only. MICROSOFT MAKES NO WAR-
RANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMA-
TION IN THIS DOCUMENT.
Microsoft may have patents, patent applications, trademarks, copyrights, or
other intellectual property rights covering subject matter in this document. Ex-
cept as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trade-
marks, copyrights, or other intellectual property.
c© 2008 Microsoft Corporation. All rights reserved.

References

1. Marwan Abi-Antoun, Daniel Wang and Peter Torr, Checking Threat Modeling Data
Flow Diagrams for Implementation Conformance and Security, ASE’07, 2007. At-
lanta, Georgia, USA



Experiences Threat Modeling at Microsoft 11

2. Lorrie Faith Cranor, A Framework for Reasoning About the Human in the Loop,
Symposium on Usable Privacy and Security, 2008. Pittsburgh, Pennsylvania, USA

3. Carl Ellison, Ceremony Analysis, Microsoft ThinkWeek paper, January 24, 2005.
A version of this paper appears as Cryptography ePrint 2007/399, October 2007.
http://eprint.iacr.org/2007/399

4. Shawn Hernan, Scott Lambert,Tomasz Ostwald and Adam Shostack, Uncover Secu-
rity Design Flaws Using The STRIDE Approach, MSDN magazine, November 2006

5. Michael Howard and David LeBlanc, Writing Secure Code, Microsoft Press, 2001
6. Michael Howard and David LeBlanc, Writing Secure Code, 2nd edition Microsoft

Press, 2002
7. Michael Howard and Steven Lipner, The Security Development Lifecycle, Microsoft

Press, 2006
8. Loren Kohnfelder and Praerit Garg, The threats to our products, Microsoft Inter-

face, April 1, 1999. Available at http://blogs.msdn.com/sdl/attachment/9887486.
ashx

9. Microsoft Corporation, “SDL Process Introduction,” 2008, http://msdn.

microsoft.com/en-us/library/cc307406.aspx

10. Oxford English Dictionary Online, visited July 14, 2008
11. Craig Rubens, Cleantech Terror Alert: Hacking the Grid,

Earth2Tech, June 26, 2008, http://earth2tech.com/2008/06/26/

cleantech-terror-alert-hacking-the-grid/

12. Adam Shostack, Reinvigorate your Threat Modeling Process, MSDN Magazine,
July 2008

13. Frank Swiderski and Window Snyder, “Threat Modeling,” Microsoft Press, 2004


