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ABSTRACT

Engineering techniques to address the endless parade of security issues are an important area of
research. Properties of practices in industrial use are rarely studied. Security workers satisfice. There
is a widespread perception that security work must be cumbersome, and thus there’s no value to
assessing levels of effort. This is complemented by a belief that the nth day of work will produce
value equal to the first. These perceptions impact both practice and research. This paper expands the
acceptable paradigms for security analysis to include the fast, cheap and good enough. “Nothing”
is often enough for industry. This paper makes a case for valuing lightweight (“fast and cheap”)
methods, presents a set of case studies and evaluation criteria for such tools, including card decks and
role playing games.

Keywords security, threat modeling, security engineering, usable security

1 Introduction

“Copying and Pasting code from Stack Exchange” is a derisive meme, built on the idea that there’s a Proper Solution,
and ... there’s what you find on Stack Exchange. This behavior — looking for quick solutions — demonstrates two
realities. The first is even skilled technical professionals find themselves needing help in unfamiliar situations. Second,
efficiency is often scorned.

This paper explores a new frame for security methodologies: fast and cheap are good[] This is in intentionally
provocative contrast to the engineering truism of “fast, cheap, good: choose any two.” We are not arguing these tradeoffs
don’t exist, but the aphorism exists because demands for such tradeoffs are common. Research into fast and cheap
tools is undervalued relative to mathematically or otherwise “sophisticated” tools. Approaches that prioritize speed or
simplicity are frequently derided as trivial or obvious, rather than praised as elegant, or recognized as what security
workers need.

The new paradigm leads us to ask a new question about the distribution of security issues (vulnerabilities or flaws). If
such issues are very similar to one another, then knowledge of the system is important, because the primary effort to
find the issues is search — where might this crop up? If such issues are unique, then security knowledge or even ‘an
adversarial mindset’ may be paramount.

I and others create low-friction threat modeling methodologies. This work grounds and investigates the intuition that
lower friction is a worthwhile goal for security workers. This paper explains threat modeling and tools in response to
constraints. We analyze three tools we label fast, cheap and good (Section 3). From there, we construct a framework,
a flaw space and an Flaw Oracle which reliably finds them (Section 4). The juxtaposition enables us to ask how we
should judge them. We propose initial criteria of cost, expertise requirements and quality (Section 5).
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1.1 Contribution

This work:

1. Collects and organizes a set of new techniques that are rarely discussed coherently in the literature.

2. Produces a framework, motivated by those new techniques, that explicitly considers the difficulty of threat
modeling practice.

3. Provide evaluation criteria for new techniques this framework allows.

4. Ask if vulnerabilities are more like products of a factory, very similar to each other, or artisanal, each unique
and special.

2 Background

People satisfice. They accept “good enough” except where there are unavoidable pressures to go further. By way of
example, “we do not use any of our limited citation count for the idea of satisficing.”

Threat modeling is a family of techniques to anticipate future problems with a system, so they can be addressed. There
are many competing methodologies and evaluation criteria vary widely. In practice, threat modeling students often
express concerns that it will fail to find all relevant threats or complete in appropriate time.

Is one possible explanation—an explanation that could implicitly undergird all of these observations—that threat
modeling is or appears harder than it needs to be? Perhaps threat modeling practices, designed to be comprehensive,
become so comprehensive that they are too tedious to learn or execute? (This is a “perfect is the enemy of the good”
theory.

What happens when a threat modeling practice trades precision for ease, becoming less burdensome, but easier to
perform and more accessible to a wide range of practitioners? Prior work, which we discuss in section 3, suggests that
the answer can be that practices become more effective. Can these practices, or ones similar to them, actually improve
threat modeling overall, leveraging their relative light ‘weight’ to help practitioners perform threat modeling more
regularly than they would otherwise? Through our review of this literature, we argue that the answer to this question is
also yes. Building on this argument, the next section builds a conceptual framework for “fast, cheap, and good enough”
threat modeling practices.

2.1 Related work

There is a rich literature on the use of serious games or games with a purpose outside the scope of this paper. For
example, (Prensky| [[2006]) and (Abt [1987]]). There now is a well-understood set of challenges for usable security,
including that security is often a secondary task. For this preprint, we assume that software engineering and systems
operations are security workers, at least some of the time. We assume that those engineers have a compliance budget
(Beautement et al.| [2008]]), and that faster and cheaper techniques are more likely to fit within it. We assume that for
those workers, the larger the request, the more resistance it will meet, and conversely, it is easier to get them to do easier
work. That is: fast and cheap are good because security workers satisfice. (Garfinkel| [2014])

2.2 Software is used in diverse ways
There are many dimensions of diversity of software:

1. Development lifecycles range from continuous development and deployment through agile sprints to waterfall.
2. Programming languages range from assembler to Javascript or even codeless systems.

3. Deployment environments range from cloud systems through downloaded software through IoT and even
interplanetary spacecraft.

4. Impact of failure ranges from the very low impact of a local game failing through medical device software
failure potentially costing many lives.

Perhaps threat modeling practices, designed to address the highest risk systems, become so comprehensive that they are
too tedious to learn or execute? What happens when a threat modeling practice trades precision for ease, becoming less

ZPersonal observation as an instructor
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burdensome, but easier to perform and more accessible to a wide range of practitioners? Prior work, which we discuss
in section 3, suggests that the answer can be that practices become more effective. These sorts of practice may improve
threat modeling overall, leveraging their relative light by helping more people threat model or threat model more often.
The next section builds a conceptual framework for “fast, cheap, and good enough” threat modeling practices.

2.3 Threat modeling: Responding to diverse needs

Given the diverse goals of software and the diverse contexts in which software tools are used, comprehensive “security
checklists” become untenably tedious. As a result, threat modeling seeks to imagine possible threats through speculative
processes. For example, STRIDE was originally proposed as a model of threats to products (STRIDE is an acrostic of
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege) (Kohnfelder
and Garg|[[1999]]). Engineers would consider those threats to a product as a whole. A derivative, STRIDE per element,
examines each component of a system for relevant STRIDE threats (Shostack][2008]]). Clearly, the later use is both
more time consuming than the former, and less likely to miss issues. Systems such as STRIDE are intended to help
security workers search for attacks by providing prompts. (Shostack|[2014]) Board and card games sometimes assist in
the speculative process of threat modeling (Denning et al.|[2013] [Frey et al.|[2019] ). For example, the game Elevation
of Privilege stemmed from Microsoft’s development of the STRIDE methodology (Shostack|[2014]]). Even the US
Central Intelligence Agency (CIA) developed a (now-declassified) game for helping developers generate threat models
(Masnick! [2018]]).

There are some common threads in critiques of existing methods:

1. They are difficult to learn, especially for those who are not security specialists (Weir et al.|[2018]],[Denning
et al.[[2013]]). Developers who are not specifically trained in computer security might write more secure
software if they could better participate in threat identification. However, existing practices are generally
aimed at security specialists working at technology producers.

2. They require significant time, even for specialists, to carry out. Threat modeling methods require significant,
devoted time. Even games like Elevation of Privilege require at least 30 minutes; more detailed threat modeling
practices can take hours, days or weeks to complete.

3. They may systematically fail to identify particular types of threats, particularly those that arise from social
factors or relational characteristics such as gender, race, age, or disability; or those whose impacts fall on end
users or those who are invisibly impacted by it. (For example, the use of facial recognition on city streets.)
(Pierce et al.|[2018]], [Freed et al.| [2018]], Nissenbaum| [2005], Hong et al.|[2004], [Friedman and Hendry| [2012],
Suchman et al.| [2017]], |Coles-Kemp| [2009])).

Given the variety of software systems and delivery methods, it seems unreasonable to assume that there will be a single
approach to modeling threats, any more than there will be a Unified Development Process. Many threat modeling
approaches have been proposed and are coalescing around an organizing set of questions: ‘what are we working on,’
’what can go wrong’, ‘what are we going to do’ and ’did we do a good job.” (A set of industrial practitioners converged
on these in a “Threat Modeling Manifesto” in 202(7])

3 Emerging techniques serve a broader audience

Many organizations are not doing security work at all. They are not threat modeling, using static analysis, or fuzzing.
“Nothing” is good enough for them. In that context, fast and cheap methods may literally be better than that ‘nothing.’
A more nuanced view is the adoption and use of security improvements is a complex tradeoff space, and we’re not
good at evaluating these lightweight tools (Hollnagel et al.|[2006]). This work provides three short case studies of
lightweight approaches to threat modeling presented elsewhere in the literature. These are intended to show approaches
to security in product development that are lighter than commonly cited approaches. We can compare these to ‘STRIDE
per element,” a more structured approach. Similarly, for static analysis we compare it to sound approaches. (We include
an example of a static analysis tool to show that present work is not restricted to threat modeling.)

3.1 Security Fictions
3.1.1 Whatis Security Fictions?

Security Fictions is an “improvisational role-playing game” that takes place between an interlocutor (in the case of the
study, the researcher) and an engineer. The interlocutor poses as a system’s enemy: someone who wants to accomplish

3 Available at threatmodelingmanifesto.org
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a particular goal using the system. Examples from the study include (1) impersonating another user on the platform, (2)
finding a user’s geographic location, and (3) identifying all the users who have particular political goals. The engineer
then role-plays as someone trying to help the enemy—an “insider threat”—and brainstorms with the interlocutor about
how best to achieve the nefarious goal. (Merrill| [2020])

3.1.2 Why was Security Fictions designed this way?

Security Fictions was designed to respond to critiques (1) and (2) in section 2.3] To make the game easier for non-
specialists to learn, it looked toward another methodological tradition for surfacing potential future issues: speculative
design. (In building this analogy, the authors observe “that threat identification is an intrinsically speculative practice:
it requires imagining possible futures.”) To synthesize these two research traditions, Security Fictions draws the
threat modeling practice of redteaming together with Elsden et al.’s Speculative Enactments, which engage research
participants in improvisational play with real-world consequences (Elsden et al.|[2017]]). From this role-playing tradition,
the practice was designed to be quick to learn, and better at surfacing sociotechnical threats; from this redteaming
tradition, it was designed to identify actionable and specific security issues.

3.1.3 How well does Security Fictions work?

In an exploratory deployment of the game among software developers (some of whom did not specialize in security),
developers enjoyed playing the game, and used it to come up with realistic threats. Some of the threats that non-security
specialists devised were not strictly technical (for example, a UX designer discovered a social attack that relied on a
misleading feature in a user interface).

Security Fictions provokes useful insights through two related mechanisms: gamification and permission. The
gamification is the explicit framing as a role playing game. This is accompanied by an invitation to “set ethical concerns
aside,” giving social permission to discuss unwanted behaviors. This allows those with less explicit security knowledge
to explore possible security flaws, even if they lack terminology, structure or other explicit security knowledge.

3.1.4 Analysis

Security Fictions are inexpensive to run (from 15-60 minutes per session) once a set of scenarios has been created or
adopted. The open-ended nature of the framework allows the use of fewer or more questions in a given session. There is
no particular expertise required to create scenarios, but a degree of either storytelling or dungeon-mastering experience
may be helpful in effective execution, and more research may reveal criteria for good prompts.

3.2 Elevation of Privilege
3.2.1 Whatis EoP?

Elevation of Privilege is a threat modeling approach embedded into a card game. The deck consists of 6 suits, based on
the STRIDE model of threats. Within each suit there are cards 2 through Ace. Each card has a hint, for example the 8
of Information Disclosure says: ‘An attacker can access information through a search indexer, logger, or other such
mechanism.” The deck is used with a system diagram to ‘draw developers into threat modeling,” using familiar card
game mechanics.

3.2.2 Why was EoP designed this way?

The game was designed to be an enticing, supportive and non-threatening way to draw people into threat modeling,
to bring in people with different skill sets and knowledge. I wrote ‘If it were possible to have developers do basic
threat modeling, then experts could be used more effectively to find the really unusual problems with a design,” and
‘Those who are new to threat modeling or those who threat model occasionally require a more procedural approach, and
procedural approaches are generally at odds with creativity. Elevation of Privilege was created in this constraint space
in part to expose non-security experts to the enjoyment that security experts bring to threat modeling.’

3.2.3 How well does EoP work?

The game has been available for a dozen years, and I reported on a variety of anecdotes to its success ranging from
six-year-olds to companies that report having weekly sessions (Shostack|[2014]]. There are at least three substantiative
variants, including OWASP Cornucopia, F-Secure’s Elevation of Privacy (with 4 new suits) and LogMeln has added a
privacy suit, making STRIPED. Elevation of Privilege enables contributions from people who lack security knowledge
via the hints on the cards, and requires it through the turn-taking game structure. The hints are augmented by game-table
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conversation and banter, offering a chance for participants to ask questions about their hints in a lower-pressure
environment.

3.2.4 Analysis

When Elevation of Privilege was created, it was intended to be the simplest, lowest cost structured introduction to threat
modeling possible. Since then, faster and simpler approaches have appeared, putting the game at the more expensive
end of fast, cheap approaches, taking about an hour.

3.3 Semgrep

We include discussion of semgrep because it may be to static analysis what Elevation of Privilege is to threat modeling:
a lighter, more accessible approach, and it may be helpful to consider fast, cheap, good approaches beyond threat
modeling.

3.3.1 Whatitis?

Semgrep is an open source, lightweight static analysis tool that’s designed to be fast, easy to deploy and easy to program.

3.3.2 Why was it designed this way?

“Semgrep is designed for the security engineer or developer who wants to automate code review.” and “We think
modern static analysis tools should run on every keystroke in the editor, without needing network access.” (Both
https://semgrep.dev/docs/faq/)

These properties of easy to deploy, fast, and easy to write rules for seem intuitively useful, but they are less prioritized
than soundness and completeness. Semgrep explicitly rejects the need to be able to handle an abstract syntax tree,
stating in their FAQ “if you can write code, you can write a Semgrep rule — no program analysis PhD required!”.

3.3.3 How well does it work?

Semgrep has a ‘trophy case’ on their website with 8 CVEs, and a set of useful contributions, but its use seems to be
largely internal to enterprises, which makes assessment more challenging. Further, the team behind it seems to have
a frame that value is evidenced by continued use, rather than publications. As such, the rate of rule publication may
be helpful evidence of engagement. As of April, 2021, Semgrep’s core was being released approximately weekly, in
addition to roughly 25 new rules contributed each week. This indicates that at least a few people are motivated to
continue participating.

3.3.4 Relevant reflections

Semgrep explicitly focuses on being inexpensive to learn and use, without specifying what those mean in practice. They
also focus on being accessible to those without a PhD.

The relationship between applied and academic static analysis work was the subject of reflection by the Coverity team.
Their paper on the subject discusses many of the challenges that semgrep has taken on, including troubles in deploying
their tool, speed, and managing multiple languages (Bessey et al.|[2010]).

3.4 A Flaw Space and A Flaw Oracle

The distribution of flaws by the system knowledge and security expertise required to find them (Darker areas have more
flaws). Issues in the lower left are what we describe as light flaws. Lightweight threat modeling practices can help find
them more effectively than the widely-recommended practices common today.

Flaws require different levels of system knowledge, and different levels of security expertise, to discover. Some flaws,
which we will herein refer to as light flaws, require a less system knowledge and/or less security expertise to uncover
(Figure[T)). We argue that the methods we describe above work because they help to catch light flaws, and do so with a
minimum of time and training on the part of developers.

Existing threat modeling practices, we argue, aim to capture the entire flaw space. In doing so, they undervalue the time,
energy, and organizational costs required to do so. By providing lighter practices by which non-specialists can capture
and solve light flaws, security experts would be relatively less burdened, able to focus only on a subset of the flaw space
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(represented by the upper-right in Figure[I). The remainder of this section uses a thought experiment to expound on our
reasoning.

Imagine a perfect examiner who instantly and reliably finds flaw in a system, given the correct inputs. This Flaw Oracle
takes as input first, knowledge of the system and second, knowledge of security (This is a thought experiment, we don’t
propose such an examiner exists, nor do we claim such knowledge can be codified). We are focused on what flaws will
be found, without specifying an underlying distribution, or requiring knowledge of the actual distribution. We can also
imagine that an examiner requires intensive security knowledge. Informally, some theorem provers might be analogous
to such an examiner. (The term ‘flaw’ is often used for the design subset of security issues, complementing bugs or
vulnerabilities. We use it to encompass both, as security oracle is too broad. We can also consider a Laggard Flaw
Oracle (LFO), who finds flaws and emits information at a later date.

The knowledge needed by the examiner can be seen as analogous to the participants in system engineering. The software
engineers may have a great deal of knowledge of the system, and less knowledge of security. Security engineers,
especially consultants, will bring knowledge of security, and less knowledge of the system. Knowledge is expensive.
Each step of gathering it, checking it, encoding it into human- or machine-readable forms, checking the encoding didn’t
introduce problems takes effort. Similarly, keeping such information up-to-date as systems evolve requires effort.

We can visualize the distribution of flaws in systems, and simple visualizations such as[T|can capture intuitions. Another
possible distribution (not shown) is that flaws are distributed randomly and evenly.

Thus systems that require fewer expensive inputs can have value, if there are many issues that an examiner can find
with system knowledge and a modest amount of security knowledge. For example, once you know that file APIs will
often accept network paths, someone with knowledge of where a system opens files can easily check for remote file
inclusion (RFI) bugs. The birthday problem is easily taught, but seeing how it applies to a system can be harder, and
subtle cryptographic bugs may require both security and system knowledge.

This account of the flaw space explains why the lightweight threat modeling practices we describe above may have
worked. Further, it provides a theoretical backdrop that motivates further work on developing and evaluating lightweight
threat modeling practices. Readers may be concerned that this work will do more harm than good. An analog of
Gresham’s Law of “Bad money drives out good” may be relevant: bad security may drive out the good. We disagree.
The availability of inexpensive clothes does not stop people from paying for designer clothes; each delivers a different
value.
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3.5 Evaluating Practices

Having put forth the idea that light flaws exist, we ask: how best can we judge practices that aim to catch these
flaws? We propose three, primary dimensions: cost, expertise requirements, and quality of output. These are important
dimensions which make up a multidimensional design space; we expect there are other useful criteria beyond these.
These criteria exclude the impact of the output, which has surprised some early readers. The usefulness of a technique
is in a context, and the tradeoffs which that context demands are independent of the tool (We do not judge a hammer
useless because we have a lot of hex nuts).

3.5.1 Cost

Cost include money, time, and organizational energy. Time includes training, preparation, and execution. Some systems
require only minutes of training or setup. For example, Security Fictions takes a few minutes to explain and set the
stage. Elevation of Privilege usually involves a few minutes of stage-setting, 5-15 minutes to draw a system diagram,
and a round of test play for people to ‘get the hang of it.” This is in contrast to a half day or even days of training in
deeper threat modeling approaches. Some systems, like Security Fictions, requires some prep work in crafting the
scenarios. (It is reasonable to think that a compendium of scenarios could be created, but none has.) Organizational
costs include coordination overhead associated with communicating flaws across functional teams, prioritizing issues to
fix, and so on. The more that lightweight processes reduce coordination overhead (e.g., by empowering UX designers to
solve problem on their own), the lower their cost. The LFO adds cost by delay. It is well understood that fixing issues is
more expensive after code is written, and more expensive yet when the code has dependencies which need to be at least
checked and possibly fixed, or when the code is already deployed possibly at many sites, each of which must deploy the
fixes. Thus, the slower the LFO, the more cost it allows to creep into the system.

3.5.2 Expertise requirement

Figure [T] shows a model where discovering flaws require different levels of system-specific and security-specific
expertise. Effective lightweight methods can minimize reliance on security-specific expertise, compensating by relying
instead on system-specific expertise. In some empirical work (Merrill and Weber|[2019]]), a UX designer used misleading
unicode symbols to perform an impersonation attack, effectively using their systems knowledge to compensate for a
lack of security-specific knowledge. The ability of various practices to facilitate this tradeoff is critical for catching
light flaws. Characterizing and defining the exact security knowledge required to make good use of a tool is beyond the
scope of this paper, but we’ll note briefly that we have never seen a characterization of skill except “this tool requires a
PhD in static analysis.”

3.6 Quality

The most challenging but most crucial dimension to measure is the quality of practices’ output. Students often seek to
find “good threats.” What makes a “good threat”? There is an argument that a “good threat” discovered by a threat
modeling approach is one that the organization cares about enough to fix. That is, the time spent to fix it is evidence of
a useful output. But there can be reasons to not fix a worrisome problem. The organization may be fixing other more
pressing issues, there may be issues of application compatibility or usability of a fix. In other words, the perceived
relevance of flaws is contextual. The exact same issue, discovered at (for example) Amazon, Microsoft, Bank of
America or a local community bank might be treated differently at each. Bug bounties offered by each are scoped
differently, rewarding different flaw types.

There may be work in assessing quality from the perspective of the users. For example, in (Slupska et al.|[2021]]) an
argument is put forth for threat modeling techniques that are easier for those other than cybersecurity professionals to
use. There are important dimensions of quality, such as avoiding creepy advertisements or stalking, that traditional
information-security centered approaches may not prioritize. Future work should delve into these questions as they
apply to the flaw space described here.

4 Future work

We hope to create a framework in which future approaches to threat modeling can be understood, evaluated and
compared. We hope to enable work in the area of fast and cheap tools to help people analyze security, and to enable
rigorous and thoughtful discussion of those tools. Ease of use, speed, scope, suitability for non-technical staff at
organizations building systems, suitability for use by the public, advocates, activists, and other factors are all important.
By defining the nature of tradeoffs that threat modeling tools make, we hope to enable exploration of new tools that
more strategically and purposefully approach different portions of the flaw space we describe in Figure
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While this work is highly preliminary, it raises one critical point of reflection for future research: our observation that
a flaw space, distributed across system and security expertise, might exist begs a cultural shift in the way that we, as
security professionals, evaluate security processes and outcomes.

How do we judge the quality of processes and outcomes? Analyses, typically received from academia, focus on the
soundness of analysis, formality of proofs, precision and recall of algorithms, and so on. But perhaps quality in security
is an emergent characteristic of an organization. Banks and falafel stops have not only different security needs, but
different ways of evaluating what kinds of security make sense for them to approach, and different competing constraints
for their time and attention.

Sensitivity to quality as an emergent and situated characteristic of organizations allows us to judge threat modeling
practices better. It centers broad outcomes, and diverse notions of what it means to be secure.

The cultural shift here, for us, is to make less formal and less analytical processes acceptable by the cultural standards
of security research (The author has seen a paper rejected with the comment “This is great, and it needs equations”).
Moving toward these more situated notions will help us understand the work that, for example, a local falafel shop does
to protect themselves as relevant and important, assessing the quality of their output that isn’t overly tied to narrow
analytical frameworks. I return, this will help us build practices that make security more relevant and actionable to the
people who need it.

Our call to action: security needs better ways of meeting people where they are, understanding what they need. An
analogy to economics helps illustrate the conceptual shift required here. In economics, a broad and useful assumption is
that people are rational; that they have a reason to do the things that they do. When economists observe people doing
something seemingly irrational (for example, not saving as much as they “should”), economists look for the rationality
that underlies that decision (for example, perhaps people don’t save because they believe they’ll die having never spent
their money; this makes saving contextually irrational).

As security researchers, we can do something similar. What are people doing, and what is the rationality that underlies
those actions? When people ignore our security advice, perhaps doing so is rational for them because, for example, it
costs them too much in time or energy relative to their other goals (see our design dimensions above and [Herley| [2009]).
How can we best use those observations to design more relevant and actionable security practices?
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